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Minimum Ellipsoids 

By Donald D. Fisher 

1. Introduction. A well-known statistical problem is to determine an ellipsoid 
Rs' in En which contains a certain fraction of the points from a set S. Here we use 
the word "contains" to mean that a point pi E S is either in the interior or on the 
surface of the ellipsoid Rs8. Although the determination of Rs8 is easy computation- 
ally, the determination of the ellipsoid of minimum volume, say, which contains all 
the points of S is quite difficult. In this note we give a method for determining 
ellipsoids satisfying a certain minimum property and compare these with ones ob- 
tained by statistical methods. 

2. Statistical Test Region. If the points of S tend to be correlated, an ellip- 
soid is an appropriate regular test region. One statistical test region is set up by 
making use of the F-distribution and multivariate analysis. We assume that S has 
a multivariate normal distribution with an unknown mean u which we estimate by 
taking the mean of the points in S. Furthermore, we assume the unknown co- 
variance matrix associated with S may be estimated by the (symmetric) matrix 

E(xi-) (Xi -x)(y - y)E (xi- x)(zi -z2) 

E( _y)2 (yi _ y(zi -z * 
(2.1) S= 1(Z 

where N is the number of points in S [3]. 
We assume a point q of unknown lineage has the same distribution as the points 

pi E S. Let a be the fraction of allowed false positives, i.e., the allowed fraction of 
unknowns which do not lie in Rse, but by some other test are found to be a member 
of S. The unknown point q belongs to S with probability 1 - a if 

(2.2) (q - w)Ts1(q - w) = N2(NN +1)(NN1) ) F-2,NlN2) 

where N1, N2 are the number of degrees of freedom of the denominator and numer- 
ator, respectively, associated with the F-distribution and w7v is the computed mean 
of the points p, E S. Inequality (2.2) derives from Hotelling's T2 statistic in 
multivariate analysis [1]. Geometrically, (2.2) defines the interior and boundary of 
an ellipsoid with the mean w as center. For fixed N1, N2, FN2,N1-N2 increases as a 
decreases, consequently, the size of the ellipsoid increases as a decreases. For a 
given F the volume of Rse is 
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(2.3) Vs` = 7r {N2(Ni + 1)(N1 - l)F;2,N-N2 [Ni(Ni - N2) TI xj-l}l'2X 

In E3 the eigenvalues Xj of S may be computed directly by trigonometric relations 
[6]. In general a certain number of points from S will lie outside the above ellipsoid. 
As F increases more and more points of S will be contained in Rs'. 

3. "Minimum" Ellipsoid Region. C. Loewner has proved that there is a 
unique ellipsoid of minimum volume which contains all points of S. The problem 
may be stated as a minimum problem, i.e., given pi E S with mean w7, deter- 
mine the matrix 3 for which 

(3.1) det{3F'} Jj[ 

is a minimum subject to the constraints 

(3.2) (pi - Cv)T3(pi - v) ? 1 

This formulation possesses two disadvantages [4]: (i) The volume becomes in- 
sensitive to change in all Xi if any Xi -> 0; (ii) det{c31} is not a convex function of 
3 and consequently the numerical computations for the minimum are difficult to 
perform. 

The problem may be recast in a form which avoids these difficulties. We de- 
termine the matrix 3 for which 

(3.3) s o (3) trace{J31} = (Xj)-' = Erj2 

is a minimnum subject to the constraints 

(pi - Cv)3 (pi - v) ? 1 
(3.4) tii _ E I tij , 

j4i 

where rj is the length of the jth semiaxis and tij is the i, j element of 3. In [4] it is 
shown that trace{3 1} is a strictly convex function of 3 and that 3-1 is a convex 
function of 3. This measure of size is unique and, furthermore, there is a method 
(gradient projection (GP) method) for determining the associated ellipsoid Rs' 
numerically [5], [7]. 

Let 3c1 = Al = (uij). The gradient of sc(3) is given by 

o~ 
Tuj at=-2us Fj, j . 

(3.5) i 
_ T -o =-Ui Ui, 

where uj is the jth column of ql. 

4. Numerical Results. The ellipsoids Rsf and Rs' (indicated in the tables by 
RSk and RSk, k = 1, I ,11) were determined for 11 sets of points inE3 with 150 
points in each set (denoted by Sk5o) and for 11 subsets of the above sets with 25 
points in each subset (denoted by Sk5). The data originated from vectorcardio- 
graphic studies [2] of subjects which had been assigned to specific sets based on 
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independent tests. The ellipsoids RsV were determined by 6 variables and either 
153 constraints or 28 constraints, respectively. Most of the constraints turn out 
to be inactive since a unique ellipsoid in E3 is determined by 3 "independent" 
points. 

The relation of the size of Rs8 to the size of RsV highlights a characteristic of the 
F test. The larger the sample size the better the estimate of the various statistical 
quantities, hence the sharper the F test. For a sample size of 25 the F test allows 
for considerably more scatter than for a saml-ple size of 150. Note that Rs8 contains 
all points of S whereas, by assumption, Rs' contains only the fraction 1 - a of the 
points of S. The actual number of points exterior to Rs' is given in Table 4. Com- 
parisons in Tables 1, *.. , 4 are based on an F value for a = 0.05. For the smaller 
sample size both the volume and sum of squares of the semiaxes for Rs' are smaller 

TABLE 1 
k k 

rmax/rmin 

sk sk5o 

A: 
Rvsk ReSk, a = 0.05 RvSk RSk, a = 0.05 

1 1.36 2.46 1.52 2.37 
2 1.78 2.03 2.23 2.14 
3 2.49 2.37 3.31 2.02 
4 2.70 1.83 2.59 2.09 
5 1.31 1.74 1.82 2.09 
6 1.84 1.57 1.60 1.64 
7 1.35 1.52 1.50 1.32 
8 1.68 1.53 1.31 1.40 
9 1.64 2.43 1.84 1.71 

10 1.64 2.13 1.58 1.66 
11 2.52 3.07 1.72 2.04 

TABLE 2 

sk 
sk 

S25 S150 
if 

Rvk RSk, a = 0.05 Rvk RSk , a = 0.05 

1 0.00225 0.00199 0.00212 0.00088 
2 0.00864 0.01575 0.02220 0.00957 
3 0.03387 0.04217 0.09718 0.03374 
4 0.06468 0.07890 0.16194 0.07966 
5 0.38915 0.52527 0.91020 0.59686 
6 0.78645 1.37867 1.66261 1.22425 
7 0.92816 1.64883 2.56710 1.89610 
8 1.46047 2.40659 3.76361 2.52306 
9 0.61088 0.98923 3.61434 1.47622 

10 0.30282 0.51189 2.49975 0.81512 
11 0.08671 0.20482 1.59846 0.47684 
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TABLE 3 
Z (rik)2 

sk 
sk 

S25 150 

k 
Rsk RSk a - 0.05 RSk Rek, a = 0.05 

1 0.05347 0.06169 0.05248 0.03516 
2 0.14026 0.22163 0.29139 0.16590 
3 0.41744 0.45623 0.96584 0.36674 
4 0.65938 0.61913 1.16601 0.65657 
5 1.64423 2.17246 3.15794 2.51408 
6 2.88333 3.96950 4.52434 3.72471 
7 2.94184 4.43341 5.94049 4.71656 
8 4.21288 5.73125 7.45132 5.76568 
9 2.34140 3.78881 7.96869 4.27550 

10 1.46843 2.29726 5.93542 2.84975 
11 0.75918 1.48931 4.51029 2.14763 

TABLE 4 

Number of Points Exterior to RIe 

k ~~~~~~k sk 
S25 S150 

1 1 10 
2 0 6 
3 1 8 
4 1 12 
5 0 6 
6 0 8 
7 0 5 
8 0 9 
9 1 11 

10 0 9 
11 0 10 

in most cases than those for Rs'. However, the volume and sum of squares of the 
semiaxes for Rsv are greater than those for Rs' for the larger sample size. 

Table 1 summarizes the ratios of the maximum semiaxis rmax to the minimum 
semiaxis rmin. Table 2 gives the volumes (apart from a multiplicative constant) of 
the ellipsoids and Table 3 gives the sum of squares of the semiaxes. Note that even 
though the volume of Rs' is greater than the corresponding volume Rs8 for the 
larger sample, the ratio rmax/rmin for Rs' is not always greater than the ratio rmax/rmin 

for Rs8. This is accounted for by the fact that Rsv must orient itself differently from 

Rse in order to include an extreme point, whereas an extreme point does not in- 
fluence Rs' significantly. 

GP computing time on the 7090 for 8 cases with 6 bounds and 28 active con- 
straints was 0.8 minutes. For 12 cases with 6 bounds and 153 active constraints the 
total 7090 time was 2.7 minutes. 
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